

High Performance Wordpress

“Faster, Cheaper, Easier : Pick Three”

Wordcamp Indonesia 2010

Gunadarma University

30 January 2010

Author : Harry Sufehmi

Rev : 201001301

About

● Technical Analyst, Birmingham City Council
– Birmingham.Gov.UK
– 2005 : 1 million daily pageviews
– Best eGovernment website in Europe

● 2007 : IlmuKomputer.com
● 2009 : KumpulBlogger.com, etc

● http://harry.sufehmi.com/about/

Scope

● Growing-pains Sites :
– Not enough revenue yet to pay for proper Multi-Tiered

Infrastructure : servers, tech.team, etc

– Too big for Shared Hosting

● Alexa rank (approx) 100.000 – 10.000
● Daily Pageviews : 100.000 – 5.000.000

● Need help to be able to stay alive,
and grow to the next level !

Lesser, Harder Ways to Speed

● PHP Accelerators : Potential bug/quirks
● MySQL tuning
● Nginx : eg: moving the bottleneck to PHP & MySQL

● WP cache plugins : still hits A & P
● Wordpress “lite” : maintenance nightmare
● Linux kernel tune-up (!)
● Turning the site into Static version

(eg: all HTML files !)

Goals

● Faster :

Ability to serve more visitors, with faster response

● Cheaper : Using one server
(typical configuration : dual-core, 2 GB RAM)

● Easier : As little work as possible

Optimization Steps

1.Benchmark

2.Define goals

3.Profiling

4.Optimize :
Start with the Biggest, Lowest-hanging Fruit !

5.Test & Benchmark

6.Go To #3

7.Done !

Problem

● In many cases, we found out that even the
Webserver itself, the “lightest” component of the
AMP stack, is also THE bottleneck; not just the
App server or Database server

● Conclusion : The flood must be stopped before it
even reaches the webserver

● Solution : Edge-server

Edge Server

● Also known as “Reverse-Proxy”
● Squid 2.5 stable chosen :

– Simple setup : very little config & changes
– Fully standards-compliant
– Support Virtual Hosts
– Excellent documentation & support

● Result : Wordpress benchmark
● Was : 2 requests / second
● Now : 2000 requests / second
● 100.000% performance increase !

Hitting Every Point
in the Infrastructure.

Each point then
became potential bottleneck

I
N
T
E
R
N
E
T

Apache

PHP

MySQL

I
N
T
E
R
N
E
T

Apache

PHP

MySQL

SQUID

Acting like Armor, Squid absorbs
most of the hits.

Most of requests to Wordpress sites
are Read-requests,

which are very cacheable.

Therefore, most requests then are
served by Squid.

Very little are left to be served by

the AMP stack

How To : Overview

● Setup Squid
● Cache-enable Apache
● Cache-enable PHP
● Increase open files limit
● Redirect port 80 incoming to Squid
● Done !

● Assumption : Ubuntu Linux

How To : Setup Squid

● cd /tmp

● wget http://www.squid-cache.org/Versions/v2/2.5/squid-2.5.STABLE14.tar.bz2

● tar xjvf squid-2.5.STABLE.tar.bz2

● cd squid-2.5.STABLE14

● mkdir /opt/squid

● ./configure –prefix=/opt/squid –-with-maxfd=8000 --with-large-files

● make all

● make install

● mkdir /opt/squid/var/cache

● mkdir /opt/squid/var/logs

● chown -R nobody:nobody /opt/squid/var/logs/

● chown -R nobody:nobody /opt/squid/var/cache/

http://www.squid-cache.org/Versions/v2/2.5/squid-2.5.STABLE14.tar.bz2

How To : squid.conf

the essentials

 http_port 80

 httpd_accel_host virtual

 httpd_accel_port 8181

 httpd_accel_uses_host_header on

cache-related settings

 cache_mem 128 MB

 maximum_object_size_in_memory 1024 KB

 cache_dir ufs /usr/local/squid/var/cache 4096 16 256

access control

 http_access allow all

 http_reply_access allow all

 icp_access allow all

How To : cache-enable
Apache

● Enable mod_expire : a2enmod expires

● Wordpress' .htaccess :

 <IfModule mod_expires.c>

 ExpiresActive On

 ExpiresDefault “access plus 1 day”

 </IfModule>

How To : cache-enable
PHP

● Edit /etc/php5/apache2/php.ini

● Change :
session.cache_limiter = nocache

● Into :
session.cache_limiter = public

● /etc/init.d/apache2 stop
● /etc/init.d/apache2 start

How To : Increase
Open File Limit

● Create a script to start Squid :
 /opt/squid/restart-squid.sh

#!/bin/bash

kill running copies of squid

/opt/squid/sbin/squid -k kill

recreate disk cache

/bin/rm -rf /opt/squid/var/cache ; /bin/mkdir /opt/squid/var/cache

/bin/chown nobody:nogroup /opt/squid/var/cache

/opt/squid/sbin/squid -z

start squid

ulimit -n 10000 ; /opt/squid/sbin/squid -d 2

How To : Redirect
Port 80 To Squid

● Use Iptables, easily with Firehol : apt-get install firehol
● Edit /etc/firehol/firehol.conf

version 5

server_squid_ports="tcp/8181"

client_squid_ports="default"

redirect to 8181 inface eth0 proto tcp dport 80

interface eth0 internet

 protection bad-packets

 server "icmp ssh smtp http pop3 squid" accept

 client all accept

How To :
Start It Up

● Start Squid : /opt/squid/restart-squid.sh
● Start Port 80 Redirect : /etc/init.d/firehol start

● Do some benchmarking
● Done !

Other Big, Low-Hanging Fruits

● Themes Optimization :
● Less Components : consolidate / strip away
● Do more simultaneously :

browser fetch 4 objects simultaneously
 from a domain,

so, use more sub-domains / CDN
● More at http://to./es3

http://to./es3

Other Big, Low-Hanging Fruits

● DNS Optimization : Use fast, fail-safe
nameservers (thanks Simon Lim)

Recommendation: ZoneEdit.com

● MySQL Capacity Optimizations : http://to./es2

Thank You

Questions ?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

